TITLE	Articulacied Multimedia Physics, Lesson 14, Gases, The Gas Laws, and Absolute Temperature.
INSTITU'IION	New York Inst. of Tech., Old Westbury.
PUB DATE	[65]
NOTE	129p.
EDRS PRICE	MF-\$0.65 HC-\$6.58
DESCRIPTORS	*College Science; Computer Assisted Instruction;
	*Instructional Materials: *Kinetic Molecular Theory;
	*Multimedia Instruction; *Physics; Science Education;
	Study Guides; Supplementary Textbooks

ABSTRACT
As the fourteenth lesson of the Articulated
Multimedia Physics Course, instructional materials are presented ic this study guide with relation to gases, gas laws, and absolute temperature. The topics are concerned with the kinetic theory of gases, thermometric scales, charles' law, ideal gases, Boyle's law, a osolute zero, and gas pressures. The content is arranged in. scrambled form, and the use of matrix transparencies is required for students to control their learning activities. Students are asked to use a magnetic tape playback, instructional tapes, and single concepic filims at the appropriate place in conjunction bith the worksheet. Included are a homework problem set and illustrations for explanation purposes. Related documents are SE 015963 through SE 015976.
(CC)

ARTICULATED MULTIMEDIA

 PHYSICS

LESSON (14)

NEW YORK INSTITUTE OF TEGHNOLOGY ERIC old westbury, NEW YORK

NEW YORK INSTITUTE OF TECHNOLOGY
 Old Westbury, Long Island
 New York, N.Y.
 ARTICULATED MULTIMEDIA PHYSICS

Leesson Number 14

GASES, THE GAS LAWS, AND ABSOLUTE TEMPERATURE

IMPORTANT: Your attention is again called to the fact that this is not an ordinary book. It's pages are scrambled in such a way that it cannot be read or studied by tuming the pages in the ordinary sequence. To serve properly as the guiding element in the Articulated Multimedia Physics Course, this Study Guide must be used in conjunction with a Procram Control equipped with the appropriate matrix transparency for this Lesson. In addition, every Lesson requires the availability of a magnetic tape playback and the appropriate cartridge of instructional tape to be used, as sisnaled by the Study Guide, in conjunction with the Worksheets that appear in the blue appendix section at the end of the book. Many of the lesson Study Guides ajso call for viewing a single concept film at an indicated place in the work. These films are individually viewed by the student using a special projector and screen; arrangements are nade and instructions are given for synchronizing the tape playback and the film in each case.

COPYRIGHT ACKNOWLEDGEMENT

Material on white sheets: Copyright 1965 by Welch Scientific Company. All rights reserved. Printed in U.S.A. Grateful acknowledgement is made to the holder of the copyright for the use of this material in this validation version of the Study Guide.

Material on colored sheets: Copyright 1967 by the New York Institute of Technology. All rights reserved. Printed in U.S.A.

[^0]Now that you have some familiarity with the molecular activities constituting internal energy, we are ready to study gases. We will cover some physical events and concepts that deal with gases.

We picture a gas as consisting of molecules moving about in a concainer with random motion, colliding with each other and with the walls of the container. To describe a given specimen of gas, we consider its volume mass, density, pressure, temperature, and constituents. We try to estabiish relationships between these factors. When the relationships are experimentally verified, we attempt to develop a general theory to explain :hen!

In common with cher phases of mechanics, it is much simpler co deal with an ideal situation first. Corrections for actual conditions will ome lacer. So we begin by defining an ideal gas. Remember, an ideal gas does not exist. However, many real gases closely approach the specificarione for an ideal gas. Looking over the assumptions in the definition of an ideal gas, you will recognize that none are "wild.". They are all reasonable and close to actual conditions.

Please turn to page 122 in the blue appendix.

These are the assumptions when form the defirstion or an leal gas:
(1) The molecules move at zandom wichin the container.
(2) Every molecule has the same mass as every orher molecule of the same gas.
(3) The molecules are negligibly small compared to the distances they trawel becween colifsions.
(4) Collisions between molecules and between the moiecules and the walls of the container are perfectly elastic; that is; meshanical energy is conserved.
(5) The molecties do not exert forces on each other exceps during collisions.

These assumptions enable us to construct a model or an ded gas. As we develop physical laws zelating so ideal gases, we must never forger that applications of these laws are Ifmited to ideal-gas condirions.

Explanations of the behavior of a gas in this model form part ot the Kinetic Theory of Gases. Although scill a theory, the concepts and ramifications of the kinetic theory have led to very fruitfil results.

This lesson begins with a consliaracion of the pressure of a gas: what causes it, how it depends on orher things, how ic may be increased or decreased, and other factors. These ideas will lead to the lews about gases and an understanding of the meaning and usefulness of the concept oi absclute zero.

Please go on to page 3.

In our model of a gas, we picture widely spaced molecules moving randomly in entry space with speeds a little taster than sound tot the order af $400 \mathrm{~m} / \mathrm{sec}$, colliding with each other and with the walls of the container

The molecules ty against and rebound dom the wails like handballs.
 shows \# Lisw molecules in a contanex.

Figure
If this gas were 2,0 g of hydrogen, about $6 \mathrm{x} \mathrm{u}^{23}$ molecules waved be present. We th so mary monerules flying about, it is sate to guess thar for every moleshe sambaing into the tight-hand wall at a given instant, there is ore colliding with the ley -hand wall; the same would be true for the upper and lower

 when your dis is being hit by the same member or molecules, on the atexige: as ency ghent square centimeter in a given interval of rime.

Suppose the container in Figure 1 is made of welty light material possessing almost no inertia. If the number of molecules colliding with each mix. area on each of the four wall is nor equal for a given period, then what would you expect?

11
A The container is stationary.
E The container is moving about.

YOUR ANSWER --- A

You are correct.

$\frac{\text { NOTEBOOK }}{\text { Lesson }} \frac{\text { ENTRY }}{4}$

(Item 4)
(d) Boyle's Law and Charles' law may be combined into a single expression to give us a general gas law:

$$
\frac{P V}{I}=\frac{P^{\prime} V^{\prime}}{T^{\prime}}
$$

(e) Sample problem: (Copy the problem next presented as an illustration of the urse of the combined law.)

Sample Problem: Chemists are often called upon to reduce a gas to conditions of standard temperature and pressure. Standard temperature is $0^{\circ} \mathrm{C}$ and standard pressure is 76.0 cm of mercury. Suppose you have a gas with an initial volume of $500 \mathrm{~cm}^{3}$, at a temperature of $20^{\circ} \mathrm{C}$, and a pressure of 75.0 cm of mercury. What volume will the gas have when reduced to STP? (STP is the abbreviation for standard temperature and pressure.)

It is important to list the infifial and new values of the known quantities, this way:

Initial

$$
\begin{array}{ll}
\text { Intial } & \text { New } \\
P=75.0 \mathrm{~cm} & P^{\prime}=76.0 \mathrm{~cm} \\
V=500 \mathrm{~cm}^{3} & V^{\prime}=? ? ? \\
T=293^{\circ} \mathrm{K} & T^{\prime}=273^{\circ} \mathrm{K}
\end{array}
$$

Wext, write the equation and solve for the unknown:

$$
\frac{P V}{T}=\frac{P^{\prime} V^{\prime}}{T^{\prime}}
$$

so that

$$
V^{\prime}=\frac{P V T^{\prime}}{P^{\prime} T}
$$

or better

$$
V^{\prime}=v \times \frac{P}{P^{\top}} \times \frac{T^{\prime}}{T}
$$

Substitute and solve for V^{\prime}; write your answer, then check it by turning to page 解

YOUR ANSWER --- A

Apparently, your approach to the solution was correct but you have an exwor in order of magnitude. It is important that you pay careful atcention to all the details of the answer choices given.
piease return to page 26 and select the right answer.

YOUR ANSWER --- A

No, there is no error here:

$$
\begin{aligned}
{ }^{\mathrm{o}_{\mathrm{K}}} & ={ }^{\circ} \mathrm{C}+2.73 \\
& =2 \mathrm{2} 2^{\mathrm{O}} \mathrm{C} \\
& =485^{\circ} \mathrm{K}
\end{aligned}
$$

Please return to page 10. Try another answer.

YOUR ANSWER --- C

No, one of the given answe: is right.

Perhaps you are not handling the proportion correctly, Let's see.
The product of the given pressure (2.0 at or $20 \mathrm{nt} / \mathrm{cm}^{2}$) and the given volume ($600 \mathrm{~cm}^{3}$) is equal to a constant. We know, therefore, that the product of the new pressure (3.0 atm or $30 \mathrm{nt} / \mathrm{cm}^{2}$) and the new volume fanknown) mist be equal to the same number, since it is a constant. But, things equal to the same thing are equal to each other, so the two products may be equated.

Make a habit of using the following symbols.

$$
\begin{array}{ll}
V=\text { original volume } & P=\text { original pressure } \\
V^{\prime}=\text { new volume } & P^{\prime}=\text { new pressure }
\end{array}
$$

So, since $P V=k$ and also $P^{\prime} V^{\prime}=k$, then $P V m^{\prime} P^{\prime} V^{\prime}$. This is the most convenient form of Boyle's Law for our purposes.

In this problem we have:

$$
\begin{array}{lll}
V=600 \mathrm{~cm}^{3} & P=2.0 \mathrm{~atm} & \left(\text { or } 20 \mathrm{nt} / \mathrm{cm}^{2}\right) \\
V^{\prime}=? ? ? & P^{\prime}=3.0 \mathrm{~atm} & \left(\text { or } 30 \mathrm{nt} / \mathrm{cm}^{2}\right)
\end{array}
$$

And since $P V=P^{\prime} V^{\prime}$, then:

$$
2.0 \mathrm{~atm} \times 600 \mathrm{~cm}^{3}=3.0 \mathrm{~atm} \times \mathrm{V}!
$$

Now, all you have to do is solve for V^{\prime}, the new volume.

Please return to page 62 and select another answer.

1

YOUR ANSWER --- C

Physicists believe that all molecular motion does not cease at $0^{\circ} \mathrm{K}$. Thus, some kinetic energy must be present at the molecular level. However, this does not leac to the conclusion that only internal kinetic energy is present; nothing is sadd to enable us to conclude that there is no potential energy. in a body at absolute zero.

Please return to page 104 and choose a better answer.

YOUR ANSWER --- A

Your choice of this group tells us that you didn't work all of these out carefully. Three of the four answers are way off.

Please return to page 53, go back to the problem, and solve all four parts please. Then select another answer.

YOUR ANSWER --- A

You are correct. The Kelvin scale always r 's 273° higher than the Centigrade scale; thus, you add 273 to the Centig: reading to obtain che Kelvin equivalent. (Actually, this is a very slight approximation because $0^{\circ} \mathrm{K}=-273.16^{\circ} \mathrm{C}$, but we shall use the rounded 273 in our study.)

A few practice exercises in conversion from ${ }^{\circ} \mathrm{K}$ to ${ }^{\circ} \mathrm{C}$ and vice-versa weuld be helpful here.

In the following group of conversions, one error has been introduced intentionally. Check each one for yourself; then choose the one that has an error.
(20)
$\mathrm{A} \quad 212^{\circ} \mathrm{C} \quad 485^{\circ} \mathrm{K}$
B $\quad 14^{\circ} \mathrm{C} \quad 287^{\circ} \mathrm{K}$
$\mathrm{C} \quad-1^{\circ} \mathrm{C} \quad 274^{\circ} \mathrm{K}$
D $\quad-20^{\circ} \mathrm{C} \quad 253^{\circ} \mathrm{K}$

YOUR ANSWER --- A

The answer is not reasonable.

If we agree that $0^{\circ} \mathrm{K}$ is the lowest temperature to which matcer can be cooled, then the outside body cannot have a lower temperature than body A. However, beat flows only from a body of higher temperature to one of lower temperature. Hence, it necessarily follows that heat will not flow out of A ins any other body regardless of the latter's temperature.

Flease return to page 84. You know the right answer now.

YOUR ANSWER --- B䨖

When
When two variables are inversely proportional, the difference between various pairs of values will not reveal it.

Surely your notes do not say this: Please check back after returning to page 79 but before you choose another answer.

YOUR ANSWER --- A

When you write it this way, you can appreciate the error at once. To determine what fractional part of 1,000 is represented by the number 3.66, the fraction should be set up this way:

$$
\frac{3,66}{1,000}
$$

This should now be reduced so that " 1 " appears' in the numerator. Do it. Then please return to page 61 and make your new selection.

YOUR ANSWER --- C

This is the best answer, although it is not significant, uniess we clarify "very little" internal energy.

Suppose a body at $0^{\circ} \mathrm{K}$ has the smallest possible amount of incernal energy, then there is no temperature at which a body can have less internal energy than at $0^{\circ} \mathrm{K}$. This doesn't go far enough.

To arrive at our final deffinition of absolute zero, lex's use the idea just expressed. However, we shall push it a bit further.

Suppose a body A was at $0.00000^{\circ} \mathrm{K}$ and body E , which is in concact with it, is at $0.00001^{\circ} \mathrm{K}$. Will there be a transfer of energy irom one yo the other?. If so, in what direction will it occur? .
(28)

A Heat will flow from body B to body A until both aire at $0.00000^{\circ} \mathrm{K}$.
B Heat will flow from body B to body A until the temperatures are equalized。

C There will be no transfer of energy since both bodies are wezy cold.

YOUR ANSWER --- B

You are incorrect. Since we are dealing with $1,000 \mathrm{~cm}^{3}$ of the gas, and since the temperature will be reduced $250 \mathrm{C}^{\circ}$, then the contraction can be computed from:

$$
1,000 \mathrm{~cm}^{3} \times \frac{250}{273}
$$

When you obtain the answer to this calculation, it is to be subtracted from the original volume to find the new volume. This does not turn out to be $91.6 \mathrm{~cm}^{3}$.

Repeat the calculation, find your error, and then zeturn to page 67 to select the right answer.

YOUR ANSWER --- B

Almost, but not quite.
Three of the four answers in shis group are correct, bur thexe is one ertor.

Check your work to find the error. Then please return ro page 53 and make another selection.

```
YOUR ANSWER --- B
```

You are incorrect.

Either you're trying to work too fast, or you have missed the point. In either case, you will find it helpful to verbalize the expression $P V / T=k$. Thus, this relationship is: given a certain volume of gas V at a pressure P and an absolute temperature T, first multiply the pressure and volume (PV) and then divide this product by the absolute temperature (PV/T). This esults in a certain number, k. Next, allow the pressure P and the temperature. T to vary; say they go to the new values P^{\prime} and T^{\prime}. Now measure the new volume V^{\prime}, and again perform the same arithmetic operation, $P^{\prime} V^{\prime} / T^{\prime}$ 。 The new number will be the same number as before, k.

If you check the above answer, you will find an inversion that doesn't belong there.

Please return to page 101 and pick the right answer.

YOUR ANSWER --- B

This answer is incorrect.

Have you forgotcen how to hande problems involving a proporcionalicy?
The product of the given pressurtz (2.0 atm or $20 \mathrm{nt} / \mathrm{cm}^{2}$) and the given volume ($600 \mathrm{~cm}^{3}$) is equal to a constare, We know, therefore, that the product of the new pressure (3.0 aty or $30 \mathrm{nt} / \mathrm{cm}^{2}$) and the new volume (unknown) must be equal to the same numar, since it is a constank. But, things equal so the same thing are equal to each other, so the two products may be equated.

Make a habit of using the following symois:

$$
\begin{array}{ll}
V=\text { original volume } & P=\text { oifginal pressure } \\
V^{\prime}=\text { new volume } & P^{\prime}: \text { new pressure }
\end{array}
$$

So, since $P V=k$ and also $P^{\prime} V^{\prime}=k$, then $P V=P^{\prime} V^{i}$. This is the mose useful form of Boyle's Law for our purposes.

In this problem, we have:
$V=600 \mathrm{~cm}^{3}$
$P=2.0 \mathrm{acm}$
(or $20 \mathrm{nc} / \mathrm{cm}^{2}$)
$V^{*}=? ? ?$
$P^{\prime}=3.0 \mathrm{~atm}$
(or $30 \mathrm{nc} / \mathrm{cm}^{2}$)

Thus, since $P V=P^{\prime} V^{\prime}$, then:
$2.0 \mathrm{arm} \times 600 \mathrm{~cm}^{3}=3.0 \mathrm{acm} \mathrm{x} \mathrm{V}^{8}$
Now, solve for V^{\prime}.

Please return to page 62, solve the problem, and choose your answex.

You have now completed the study portion of Lesson 14 and your Study Guide Computer Card and A V Computer Card should be properly punched in accordance with your performance in this Lesson.

You should now proceed to complete your homework reading and problem assignment. The problem solutions must be clearly written out on $8 \frac{1}{2}{ }^{\prime \prime} \mathrm{x}$ 11" ruled, white paper, and then submitted with your name, date, and identification number. Your instructor will grade your problem work in terms of an objective preselected scale on a Problem Evaluation Computer Card and add this resule to your computer profile.

You are eligible for the Post Test for this Lesson only after your homework problem solutions have been submitted. You may then request the Tost Test which is to be answered on a Post. Test Computer Card.

Upon completion of the Post Test, you may prepare for the next Lesson by requesting the appropriate

1. study guide
2. program control matrix
3. set of computer cards for the lesson
4. audio tape

If films or other visual aids are needed for this lesson, you will be so informed when you reach the point where they are required. Requisition these aids as you reach them.

Good Luck:

YOUR ANSWER --- D

This is incorrect.

You realized that the force exerted by the $10-n t$ weight is acting on an aseat oi $10 \mathrm{~cm}^{2}$. Then you found the pressure, using $P=F / A$ or $P=10$ $\mathrm{nt} / 10 \mathrm{~cm}^{2} \mathrm{i}=\mathrm{nt} / \mathrm{cm}^{2}$. So far this is correct.

However, you forgot that the atmosphere is also pressing down on the top of she piston with a pressure of $10 \mathrm{nc} / \mathrm{cm}^{2}$. This must be included in your calcrlation.

Please revurn to page 105 and correct your error by choosing the right answer.

YOUR ANSWER --- C

You are corfect. To find the fractional part, you merely divide 3.66 by 1,000 this way:

$$
\frac{3,66}{1,000}
$$

To reduce chis to a fraction in which " 1 " appears in the numerator, divide cop and bottom by 3.66. This yields $1 / 273$.

Continuing with contracting gas, we note that experiments show that any gas of volume $1,000 \mathrm{~cm}^{3}$ starting at $0^{\circ} \mathrm{C}$ contracts $3.66 \mathrm{~cm}^{3}$ for each C° drop in temperature, provided that the pressure remains the same. Further, this can be expressed by: Any gas contracts $1 / 273$ of its volume at $0^{\circ} \mathrm{C}$ for each C° difop in temperature. This is a much more genexal way to describe the volumetric change of a gas that results from temperature yariation.

For example, $1 \mathrm{~cm}^{3}$ of hydrogen at $0^{\circ} \mathrm{C}$ contracts $1 / 273$ of a cubic centimeter for each degree of tempergture reduction; that is, it loses $0.00366 \mathrm{~cm}^{3}$ for each degree. Ten cm^{3} of oxygen contract $1 / 273$ of $10 \mathrm{~cm}^{3}$, or $0.0366 \mathrm{~cm}^{3}$ for each degree; $100 \mathrm{~cm}^{3}$ of nitrogen contract $1 / 273$ of 100 cm^{3}, or $0.366 \mathrm{~cm}^{3}$ for each degree; and so forth.

Now, answer this next question: what will be the new volume of 273 cm^{3} of a gas which is cooled from $0{ }^{\circ} \mathrm{C}$ to $-5.00^{\circ} \mathrm{C}$? Choose the right answer from those listed below.
(17)

A $254.7 \mathrm{~cm}^{3}$
B $271.17 \mathrm{~cm}^{3}$
C Neither of these is correct.

Thjs page has been inserted to maintain continuity of text: It is not intended to convey lesson information.

YOUR ANSWER --- D

Yous are absolutely correct: If a is inversely proportional to b, then we may write: $a=k / b$. By multiplying both sides. by b, this becomes $a b=k$, which shows that when two quantixies are inversely proportional, the product of any associated pair of values will be a constant.

Figure- 7 shows these pairs of values.

rotal P $\left(\mathrm{nt} / \mathrm{cm}^{2}\right)$	volume V $\left(\mathrm{~cm}^{3}\right)$
20.5	10.0
30.5	6.8
40.5	5.1
50.5	4.1
60.5	3.5

Figure 7
To test for an inverse proportion, multiply the two quantities that make up each pair. Record the products with the full number of digits, without rounding. Note that the volume column contains numbers with only two significant figures; hence the product PV will ultimately have only two significant figures for each pair. With this in mind, does the data enable you to conclude that there is a strong possibility that the volume occupied by a gas is inversely proportional to the total pressure exerted on it?
(10)

A Yes.
B No.

This page has been inserted to maintain continuity of text. It is not intended to convey lesson information.

YOUR ANSWER --- A

This conclusion is incorrect. You were misled by the fact that the downward force acting on Piseon i is 5 rimes as grear as the downward force on Piston 2.

If you wish, refer to Figure 3 on page 66. You thought Piston i would move downward, compressing the gas still fuxther, and that this compression would exert a force on Piston 2, pushing ic upward.

You must remember that equal numbers of gas molecules strike equal areas in equal times, and that the area of Piston 1 is 5 times as grear as that of Piscon 2. This means the upward foxce due to molecular impact or Piston 1 must alsc be 5 times as greaf as the corresponding force on piston 2.

Where does that leave you? True, the downward force of the 50-nt weight is 5 times as large as the downward force of the $10-n t$ weight; however, the upward force on Piston 1 is also 5 times that acting on Piston 2 。

Please recurn to page 66. You should be able to choose the right answer now.

CORRECT SOLUTION: $\quad V^{\prime}=V \times \frac{P}{P^{\prime}} \leqslant \frac{T^{\prime}}{T}$

$$
\begin{aligned}
& v^{\prime}=500 \mathrm{~cm}^{3} \times \frac{75.0 \mathrm{~cm}}{76.0 \mathrm{~cm}} \times \frac{273^{\circ} \mathrm{K}}{293^{\circ} \mathrm{K}} \\
& v^{\prime}=460 \mathrm{~cm}^{3}
\end{aligned}
$$

Try this probiem on your own:
A quantity of nitrogen occupies 2.00×10^{3} liters at STP。 What is its volume at $20.0^{\circ} \mathrm{C}$ and 735 mm of pressure?

List the PVT and the P'V'T' values. Write the equation in which V^{\prime} appears as a function of V, F, P^{\prime}, T, and T; Substitute and solve for V^{\prime}. Does your answer agree with any one of the answers listed below? If so, choose that answer; if not, press the button associated with the lave item.
(25)

A 2.22×10^{4} 1iters.
B 2.07×10^{3} 11ters.
C 1.93×10^{3} liters.
D None of these is correct.
)

YOUR ANSWER - - B

Try this equation, for instance, at the temperature of boiling water: at this temperature ${ }^{\circ} \mathrm{C}=100$ and ${ }^{\circ} \mathrm{K}=373$. Now substitute in this:

$$
{ }^{\circ} \mathrm{C}=373^{\circ} \mathrm{K}+273^{\circ}
$$

To be correct, the answer should be $100^{\circ} \mathrm{C}$. But it isn't. Therefore, the equation you chose is incorrect.

Do you see the error? Correct it, return to page 32 and choose a new answer.

YOUR ANSWER --- B

What happened to the decimal point? You just don't drop a decimal point without a reason.

Furthermore, there is an inverision that introduces another error.
Let's take a simple example. What fractional part of 100 is the number 4? To do this, you set up a fraction like this:

$$
\frac{4}{100}
$$

Then, you reduce the fraction to ins lowest rerms and obrain $\frac{1}{25^{\circ}}$
Why not do exactly the same thing with our problem?

Please return to page 61. Choose the right answer.

This page has been inserted to maintain continuity of texr. it is not intended to convey lesson information.

YOUR ANSWER --- D

Pressure is force per unit area.

You learned that the word per always signifies a fraction-bar. Where is the fraction or the fraction bar here?

If 10 apples cost 50 cents, what is the cost per apple? The answer is 5 cents per apple, of course. How did you find it? You divided one figure by the other.

Please return to page 91 and select an alternative answer.

YOUR ANSWER --- C

You're being careless in your thinking. You are forgetting the weight of the piston itself.

A total force of 10 nt due to the weight alone acts on the piston and therefore on the gas. The pressure, not the total force, is what you must find. Furthermore, the effect of atmospheris pressure in determining the pressure of the gas must be taken into consideration.

Please return to page 105. Take all factors into account. See if you can calculate the correct answer.

YOUR ANSWER ---- C

You are absolutely right.

$$
\begin{aligned}
& \text { Contraction }=1,000 \mathrm{~cm}^{3} \times \frac{250}{273}=916 \mathrm{~cm}^{3} \\
& \text { New volume }=1,000 \mathrm{~cm}^{3}-916 \mathrm{~cm}^{3}=84.0 \mathrm{~cm}^{3}
\end{aligned}
$$

Use of absolute zero, $-273^{\circ} \mathrm{C}$, as the zerompoint of a new thermometric scale was first suggested by Lord Kelvin (William Thomson, 19th century Bxicish physicist). On this scale, known as either the absolute or Kelvin scale, the intervals between degrees is exactily the same as the Centigrade interyal, but on this scale absolute zero is shown as "zero-poinc," az seen in Figure 11.

Figure 11
This drawing represents scales, not actual thermometers. Because of the difference in starting points, the Centigrade scale reads -273° for the same tempexature as Kelvin zerc, or $0^{\circ} \mathrm{K}$. Similarly, the freening point of wacez is $0^{\circ} \mathrm{C}$ and $273^{\circ} \mathrm{K}$, respectively. Thus, the boiling point of water is boch $100^{\circ} \mathrm{C}$ and $373^{\circ} \mathrm{K}$. To convert from one scale to the other is a simple matter. Which one of the following equations is corfect for conversion?
(19)

A ${ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273^{\circ}$
B ${ }^{\circ} \mathrm{C}={ }^{\mathrm{O}} \mathrm{K}+273^{\circ}$
C ${ }^{\circ} \mathrm{C}+{ }^{\circ} \mathrm{K}=273^{\circ}$

YOUR ANSWER ... ©

You are quite xighc. It should be: $0_{K}=-1^{\circ} \mathrm{C}+273^{\circ}=272^{\circ} \mathrm{K}$
The principles presented eaxifer can now help estabilsh a second importany gas law. (The fixst is Boyle's Law, as you will remember.) Refer to A and B (nigure 12.

The graph in A shows a cooling curve for helium plotted in rerms of volume V against Centigrade temperature. The gxaph is a straight line, since the wolume decreases linearly with temperature. The solid porcion of the gxaph is longer than the one we drew for nirxogen, because neliom must be cooled to a much lower temperature before it liquefies. The dotred portion is the extrapolation to absolute zero. This is familiax to you, because it is similar to the nitrogen cooling curve we analyzed eariier.

Now look at B. Which of the statemenc below is the true one:

A The curve in B is identical to shat of A, but has merely been transferred to a Kelvin axis.

B A and B have different slopes.
C A is a minus curve while B is a plus wryve。

YOUR ANSWER --- B

[^1]This page has been inserted co maincain concinuicy of text. It is not intended to convey lesson information.

YOUR ANSWER --- A

You do get an answer of 20.5 by dividing the volume by 0.488 . But how does this apply to the question? You should be able to explain all your operations logically before you make use of them.

The values in the fifth column of Figure 6 on page 71 are very important. They are obrained from a logical step derived from the sense of the probiem.

Please think about this before again returning to page 71 and choosirig another answer.

YOUR ANSWER --- C

There is an error in your arithmetic. You may have inverted the ratio of remperatures or pressures.

Please try to locate your exror; then return to page 26 and select the correct answer.

To find the absolute force acting on the gas (which is the only way we have to determine the pressure of the gas), we must know the magnitudes or all the forces acting on the piston. Theze are three contributing faccors:
(1) The weight of the objects we lay on the piston table. We can choose any value for these.
(2) The pressure of the atmosphere. This is to be taken as $10 \mathrm{nt} / \mathrm{cm}^{2}$.
(3) The weight of the pistonerod assembly, since this assembiy also presses down on the gas and contributes to its final pressure.

Please return to page 111 and select the alrernative answer.

YOUR ANSWER ---- C

You are correct. The fact that both axes start at zero, plus the fact that the graph is a straight line, are enough to establish a dixect proportionalicy. Therefore, the volume of a gas is directly proportional to its Kelvin (absolute) temperature.

This leads to:

$$
V=k I
$$

where $V=$ volume in any unit, and $T=$ Kelvin temperature. This relacionship is called Charles' Law and is certainly worth a Notebook Entry.

Please proceed to the Notebook Entry by turning to page 40.

NOTEBOOK ENTRY
 Lesson 14

4. Charles' Law
(a) For an ideal gas, or a gas under low pressure at or about room temperature, the volume of the gas is dixectly proportional to the Kelvirt (absolute) temperature, if the pressure is constant.

$$
V=k T \quad \text { (with } P \text { constant) }
$$

(b) This direct relationship is more useriully expressed as

$$
\frac{V}{T}=\frac{V^{\prime}}{T^{\prime}} \quad(\text { with } P \text { constant })
$$

(c) Sample problem: (Copy problem and solution below.)

Sample Problem: A tank contains exactly $500 \mathrm{~cm}^{3}$ of helium at $20.0^{\circ} \mathrm{C}$. If the temperature of the gas is increased to $40.0^{\circ} \mathrm{C}$, what will be the new volume of the helfum, provided that the pressure does not change?

You have the necessary equation, and three of the four quantityes invoived in Charles' Law are given. Solve the problem. Then choose an answer from those given bejow:
(23)

A New volume $=1,000 \mathrm{~cm}^{3}$
B New volume $=468 \mathrm{~cm}^{3}$
C New volume $=534 \mathrm{~cm}^{3}$
D None of these answers is correct.

YOUR ANSWER --- C

This is not correct. To show you why, let's use an analogy.

Ten applies cost 50 cents. To find the cost of one appie, or cost per apple, you do this:
cost per apple $=\frac{50 \text { cents }}{\text { apples }}=5$ cents per apple.
Now, pressure is force per unit ea. If you try to define it as A / F, you are expressing it backwards, because chis reads area per unit of force, which is meaningless.

Please return to page 91 and choose a more meaningful answer.

YOUR ANSWER -- A

According to previous discussion, this statement cannot be true.

There is strong evidence to show that even at absolute zero theze is still some molecular motion. In that case, there must be some incernal energy present.

Please return to page 104. One of the answers is fax betcer than the others.

Yow are cosrect.

The products of the associated palues of F and V eqe given in Fugue 8 before romidrag.

$\begin{aligned} & \operatorname{tocal} \frac{\mathrm{p}}{} \\ & \mathrm{mt/cm}^{2} \end{aligned}$	$\begin{gathered} \text { olume } \\ \left(\mathrm{cm}^{3}\right) \end{gathered}$	$\mathrm{P} \times \mathrm{V}$
20.5	${ }_{2} 0.0$	205.0
30.5	6,8	207.4
40.5	5.2	206.55
50.5	4.1	20\% 05
60.5	3.5	211.75

When reduced to two significant figures, the products all become 2.0 . This clearly estabilished the fact that the volume of a gas is infereeiy proportional to the total pressure acting on it or:
$V=\frac{k}{P}$ convenientily written $P V=k$
This relationship was first established by Robere Boyle, an Erigish
 gas laws, so-called because it is only approximately true for teal gases. Boyle's Law gives results that are closest to ddeal when the zange ot preasure variacion is small, and when the highest pressure exerted on the gas is ajso kept small. A gas to low pressure behaves more like an ideel gas becuves irs molecules are far apart and have lirrle effect on each orhex. Before we make this a Notebook Entry, we must answer one more question: wher elest in addicion co pressure governs the volume of a definite mass of gacy
(11)

A The force per unit area acting on it.
B Its temperature.
C The weight of the gas.

YOUR ANSWER -_- B

This answer was obtained by multiplying 0.366 by 5 (for the 50 . change) and then subtracting the product from 273.

This is not the correct procedure. The. $0.366 \mathrm{~cm}^{3}$ figure applies only to $100 \mathrm{~cm}{ }^{3}$ of a gas and should not be used here.

Think: A gas contracts $1 / 273$ of its volume at $0^{\circ} \mathrm{C}$ for each C° drop in temperature. Use this information.

Please return to page 21 and select a better answer.

YOUR ANSWER -- B

You are correct. The l0-nt weight acrs on ic π^{2} of piston axed; so that the pressure due to the weight is $1 \mathrm{nt} / \mathrm{cm}^{2}$.

The atmosphere exerts an additional pressure or 10 nticm ${ }^{2}$ mine sop an the piston; hence the tocal pressure acting on the ges is 4 ith mom ${ }^{2}$

Aiweya remember to add atmospheric pressure to applied pressure, when the circumstances warrant it.

Next, lex's perform a thought-experiment: suppose the piscorim
Efgure 5 ori page 105 is being moved downward by adding extra weigtos wa whe mbie. Wher the piston has descended to the hali-way poines we stop edrisug weights. That is, we do this when the new volume of trapped air is exactigy half the original volume. Originally a certain number of molecules were bombarding the piston, accounting for the pressure. Afcer reducing she woikwe by half, there would be twice as many molecules bombarding the wall because the otiginal number of molecules have been crammed into halik the space. What do you chink would happen to the pressure?
(5)
A. The pressure would be reduced to one-hali.

B The pressure would double.
C The pressure would remain the same.

```
YOUR ANSWER --- C
```

No. You are not clear about the difference between a direct and an inverse proportion. Be sure to review this in your notes. This review is important., so do it before returning to the original question.

Please return to page 79. Pick another answer.

CORRECT ANSWER：The secret or success in the suitum or these probians an the assignment of corzec vaiues ro．the symbois．In whs probiemp the volume into which the air will be compressed；hence，this is the new waine v ：。
 The criginal pressure was normal atmospheric，or $f=$ i4： $2 b i n^{2}$ ．Fimatio， the unknown is the original voitme，V ．So：

$$
\begin{aligned}
P V \dot{=} P^{\prime} V^{\prime} \text { and } V & =\frac{P^{\prime} V^{\prime}}{P}=\frac{44.11 b / i n^{2}}{14.71 b / \mathrm{in}^{2}} \quad x \quad 2,250 \\
V & =\underline{6,750} \mathrm{~cm}^{3}
\end{aligned}
$$

Observe how we are able to mix metric and Engidsh units because we were consistent．

The efrect of remperature on the volume of a gas has been prevessey nored：As the gas remperature tises，its volume tende to incaeaze arid y1．上e versa．In 1787，Jacques Charles showed experimentally that all gases sxpand the same amount when their temperature is raised 1 degree provided， of course，that the pressure is held constant．

Figure 9
In Figure 9，the same cylinder of gas is shown in A at recm tempersawae， and in．B at some higher temperature after heating．In B ，the volune orithe gas has increased as a result of the increase in temperacuxe．Whes ean you say zbout the relative pressures in A and B ？
（14）
A They are the same。
B．They are differenc．

YOUR ANSWER --- A

If the number of molecules colliding with the right-hand walls for instance, is greater than the number coliiding with the left-hand wall in a given sime, we could picture this as illustrated in Figure 2. (The wall areas are all equal; che container is a perfect cube.)

Figure 2
Each molecule, on the average, exerts the same force on the concainex walls. The total force on the right wall due to the sum of all the $\mathrm{F}_{\mathrm{r}}{ }^{\prime} \mathrm{s}$ would be greater than the total force on the left wall, since there are mott F_{r} 's than there are F_{1} 's.

Assuming the container is without inertia at the instant shown in the drawing, an unbaianced force would be exerced to the right and the container would tend to jump that way. The very next instant, the situation might be the reverse, causing the container to hop in the ocher difectyon: Thus, if the number of moleculas colliding with each unit area on each of the four walls is not equal for a given period, the container cends to perform a random jig: Since no gas container has ever exhibited chis tendency, we may conclude that the large number of molecules prevents this unevenness of collision from raking place.

Please return to page 3 and select the alternative answer.

Tou ate quite xight. The polume of the ges is 275 cm ath 0° it
 in going down to $-5.00^{\circ} \mathrm{C}$ the contraction will be s smes. as dange, on 32 y of ics ordginal volume.
 of cougse, "ne, difference between the initial volume and che conmacxiog or $273 \mathrm{~cm}^{3}-5 \mathrm{sm}^{3}=268 \mathrm{~cm}^{3}$ 。

Similarly, the new volume at $-10.0^{\circ} \mathrm{C}$ world be 10 sin zese mixh a $0^{0} \mathrm{C}$, of $263 \mathrm{~cm}^{3}$; at -20.0° C the volume will have becore $23 \mathrm{Sm}^{3}$; th $-100^{\circ} 0$ the volume will have become $\$ 73 \mathrm{~cm}^{3}$.

Here's an apparenty silly question. Suppose you wonid womanom ws Lower the cemperature of the gas (originaliy $273 \mathrm{~cm}^{2}$ et 0° c) co whatevec figute you pleased. What would the volume of the gas then be whera if Einally reached a temperature of -273° C?

 decrease would be:

$$
\text { sontrackion }=273 \mathrm{~cm}^{3} \times \frac{27}{273}=275 \mathrm{~cm}^{3}
$$

 $273 \mathrm{~cm}^{7}$. what volume would the gas have at chis temperasure

Check your answer by turning to page 59.

YOUR ANSWER --A A

You are incorrect. Since we are dealing with $1,000 \mathrm{~cm}^{3}$ of che gas, and since the temperature will be reduced $250 \mathrm{C}^{\circ}$, then the contraction can be computed from:

$$
1,000 \mathrm{~cm}^{3} \times \frac{250}{273}
$$

This answer is then subtracted from the original volume to find the new valume. The final answer is not $916 \mathrm{~cm}^{3}$ 。

Repeat the calculation, find your errox, then xeturn to page 67 eta select the right answer.

YOUR ANSWER $-\infty-B$

Sorry, your answer is incorrect.

Fugure 8 shows the actual products of che. P and v values before rounding to two signiticant figures.

$\begin{aligned} & \operatorname{cosil} \frac{1}{2} \\ & \left(\mathrm{nc} / \mathrm{cm}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { Wolume V } \\ & \left(\mathrm{cm}^{3}\right) \\ & \hline \end{aligned}$	$\mathrm{P} \times \mathrm{V}$
20.5	10.0	205.0
30.5	6.8	207.4
40.5	5.1	206.55
50.5	4.1	207.05
60.5	3.5	211.75

Figure 8

Admittedly, these products are not identical. But you must have noticed that they do not differ from each other by very much. Try rounding them back to ewo significant figures. What do you find?

This should give you food for thought. Remember that every. expeximent is likely to contain measurement errors due either co the chudity of the equipment or the inadequacy of the technician. Assuming that: the technician in this case is competent, the equixpment covid very easily cause the dewiations noted in the products of $P V$.

Please return to page 23. Select the alcernative answer.

YOUR ANSWER --- A

You are correct. We recommen the following symbols:

$$
\begin{aligned}
& V=\text { original volume (} 600 \mathrm{~cm}^{3} \text {) } \quad P=\text { original pressure } \\
& V^{\prime}=\text { new volume (???) (2 atm or } 20 \mathrm{nt} / \mathrm{cm}^{2} \text {) } \\
& P^{\prime}=\text { neri pressure } \\
& \text { (3 atm or } 30 \mathrm{nt} / \mathrm{cm}^{2} \text {) }
\end{aligned}
$$

For the inverse proportion, $P V=k$, where P is any value of pressure (within limits) and V is the associated volume: Thus, $P^{\prime} V^{\prime}=k$, too, and we may then write $P V=P^{\prime} V$ ' which is the most convenient form of Boyle's Law. Solving this for V^{\prime}, the unknown:

$$
V^{\prime}=\frac{P V}{P^{\prime}}
$$

Substituting:

$$
V^{\prime}=\frac{2 \mathrm{~atm} \times 600 \mathrm{~cm}^{3}}{3 \mathrm{~atm}}=400 \mathrm{~cm}^{3}
$$

Notice that the pressure units cancel out. Thus, you might have used the equivalents of 2 and 3 atm , respectively, namely $20 \mathrm{nt} / \mathrm{cm}^{2}$ and $30 \mathrm{nt} / \mathrm{cm}^{2}$ with no change in the answer. In fact, any pressure or volume units may be used as long as you are consistent.

NOTEBOOK ENTRY
 Lesson 14

(Item 2)

i
(c) Boyle's Law is most conveniently expressed as:

$$
P V=P^{\prime} V!
$$

where $P=$ original pressure, $V=$ original volume, $P^{\prime}=$ new, pressure, V^{\prime} m new volume. Any units may be used for pressure or volume as long as the same units are used throughout.
(d) Sample problem: (Copy the one we fust solved.)

Let's try another problem involving Boyle's Law. (Use 1 atm \neq $14.7 \mathrm{Lb} / \mathrm{in}^{2}$ 。)

A tank contains 4.00 cubic feet of air at normal atmospheric pressure. Determine the pressure required to compress the air so that it cocupies 1.00 cubic foot in (a) $1 b / \mathrm{ft}^{2}$; (b) cm of mercury; (c) $\mathrm{nc} / \mathrm{cm}^{2}$; and (d) atmospheres.

By including a request for one of the answers in $1 b / \tilde{r} c^{2}$ and another in cm of mercury, we are not being unfair. If you understand the impitacions of the last part of Notebook Entry 2 (c), you recognize that you can use any units you wish for volume and pressure provided that you use the same units shroughout.

Find all four answers. Then examine the groups below. Only ane of the groups contains all the correct answers. Can you pick ic out?

Group 1
Group 2
Pressure required
Pressure required
(a) $58.8 \mathrm{lb} / \mathrm{in}^{2}$
(b) 300 om of merc.
(c) $10 \mathrm{nc} / \mathrm{cm}^{2}$
(d) 6 atm
(a) $40 \mathrm{lb} / \mathrm{in}^{2}$
(b) 304 cm of merc.
(c) $40 \mathrm{nt} / \mathrm{cm}^{2}$
(d) 4 atm

Group 3
Pressure required
(a) $58.816 / 1 n^{2}$
(b) 304 cm of merc.
(c) $40 \mathrm{nt} / \mathrm{cm}^{2}$
(d) 4 arm .
(13)

A Group 1 is entirely correct.
B Group 2 is entirely correct.
C Group 3 is entirely correct.
D None of the groups is correct.

YOUR ANSWER --- D

No, there's nothing wrong with this conversion:

$$
\begin{aligned}
\mathrm{o}_{\mathrm{K}} & ={ }^{\mathrm{o}} \mathrm{C}+273^{\mathrm{o}} \\
& =-20^{\circ} \mathrm{C}+273^{\circ} \\
& =253^{\circ} \mathrm{K}
\end{aligned}
$$

Please return to page 10 and try again.

YOUR ANSWER --~ A

To obtain this answer, you multiplied 3.66 by 5 (for the $5 c^{0}$ charge and then subtracted the product from 273.

This is not the correct procedure. The $3.66 \mathrm{~cm}^{3}$ figure applies oniy to $1,000 \mathrm{~cm}^{3}$ of a gas and should not be used here.

You need to know that a gas contracts $1 / 273$ of firs volume at $0^{\circ} \mathrm{C}$ for each c^{o} drop in temperature. That's all.

Please return to page 21. You can do better than this.

YOUR ANSWER -- C

Reduction of the volume by half has not changed the number of molesules in the cylinder. They have been forced to occupy a smaller space, but we haven't allowed any to escape.

That means that there are more molecules colliding with the wails and with the bottom of the piston in a given interval of time. This is tue, for the molecules are flying about in a smaller space; and each one has a shortex distance to go before colliding with a wall. If a given molecule doesn't fly far, it collides more often.

Since pressure is the net effect of these collisions, how can the pressure remain the same, if the number of molecule-to-wall collisions increases?

Please return to page 45 and select a better answer.

This is incorrect. Didn't you notice that the temperacure was given in Centigrade? The temperatures T and T musc be expressed on the Kelviti scale. Your first step must be to convert both temperatures to Kelvin.

Please make the conversion and recalculate. Then return co page 40 and choose the correct answer.

YOUR ANSWER ——— A

Yow axe correct. Pressure is determined only by the toral weight-tom area ratio of the piston assembly as shown fir Figure 9 on page 4%. Since this is unchanged, the pressure is constant.

Now, if the flame is removed from beneath the cyinnder, the gas wild slowly lose hear to the atmosphere, its temperacure will fail, and whex it reaches owim temperature ix will have contracted back to its original volume, V_{c} In short, the volumetric change $5:=$ gas due to temperacure changes is a two-way process.

Now, $i f$ a careful experiment is performed on a known volume of gas, say $1,000 \mathrm{~cm}^{3}-$-starting at $0^{\circ} \mathrm{C}$-wie find chat when the gas is cooled s $-1.00^{\circ} \mathrm{C}$, it contraces to a new voiume of $996.34 \mathrm{~cm}^{3}$. (We assume that cus. measuring equipment is capable of giving this number of significant ripures. If the gas is fuxther cooled to $-2.00^{\circ} \mathrm{C}$, its volums becomes $992.68 \mathrm{~cm}^{3}$. Upan further cooling to $-3.00^{\circ} \mathrm{C}$, the volume shrinks to $989.02 \mathrm{~cm}^{3}$. The cosiling process may be continued to much lower temperatures winh similar results. From the figures given above, how much does a volume of $1,000 \mathrm{~cm}^{3}$ of gas contract for each c° reduction of temperature?

A Neichez of these is correct.
B $0.366 \mathrm{~cm}^{3}$
C $0.0366 \mathrm{~cm}^{3}$

CORREC: ANSWER: AT $-273^{\circ} \mathrm{C}$, the volume of the gas wowla be zers.

If the polumerte contraction equas the indital vorma, there wordid be so mote gas left: The gas will nave vamished! Now, on whe face sf tis. this is an urexly ridiculous result, becase mafer canor disappear into
 is quise simple.

The experimentally-obtained value for the contraction of agas aia obtained by Charles $-0.00366 \mathrm{~cm}^{3}$ per cubic centimeter of gas ar $0^{\circ} \mathrm{C}_{\mathrm{o}}^{\circ} \mathrm{ax}$ IVg7 of the volume of a gas at 0° C--came out of measurements done on gatas medt room emperature. As a gas is cooled, it will uitimately teanh a emperacure at which ir will liquefy. When in ics liquid scate, the cemm rraction rate of the substance is no longer $1 / 273$ of its polume at 00 . In orher words, if we could ind a gas char remaned a gas ar any semperutures our results seem to indicace that frs walume would become aero as - $273^{0} 0$. But all known gases liquefy before reaching this remperacure, so we canot catuse matter to vanish by lowering its temperature.

Ts the result we obtained by extrapolating real experimencs into regions where they cannot possibly apply entixely meaningieas, then" (Extrapolate-to carry beyond the limits of the expeximental ramge; pronounced ek strap oh late). Not at all。 it implies that nothing anda eve: become colder than $-273^{\circ} \mathrm{C}$. Other experiments of an encirely difierent nature point to the same lowest temperature for marder. For chis wessons: what do we call this temperature?

Try to think of the name, and chen turn to page 89 co sex 14 you "ae right.

[^2]YOUR ANSWER --- C

This is incorrect.

The absolute temperature of a given body does not determine whethex energy will be cransferred to it or from it. Energy transfer is dependenc solely upon the difference of temperature that exists between bodies. So, it is wrong to say that the degree of coldness will prohibit energy transfer.

Please return to page 14 . One of the other answers is much betser
is one. then this one.

YOUR ANSWER --- A

You are correct. Contraction per degree is found by subtracting one volume from another. Thus:
t ($\left.{ }^{\circ} \mathrm{C}\right) \quad$ volume $\left(\mathrm{cm}^{3}\right) \quad$ contraction $\left(\mathrm{cm}^{3}\right)$

0	1,000	-
-1.00	996.34	3.66
-2.00	992.68	3.66
-3.00	989.02	3.66

So, if you start with $1,000 \mathrm{~cm}^{3}$ of any gas ar $0^{\circ} \mathrm{C}$, it cuntracts
$3.66 \mathrm{~cm}^{3}$ for each Centigrade degree of temperature reduction.

As a matter of simple arithmetic, what fractional part of $1,000 \mathrm{~cm}^{3}$ is $3.66 \mathrm{~cm}^{3}$?
(16)

A $\frac{366}{1,000}$
B $\frac{1}{366}$

C $\frac{1}{273}$

D None of these,

YOUR ANSWER --- B

Sure! You're correct. You know that heated objects expand and cooled objects contract. A gas does not differ from a solid or liquid in this respect. Its volume will change with. changes of temperature.

So, we must be careful in stating Boyle's Law, to include something about temperature, because this, too, can cause volume changes.

$$
\frac{\text { NOTEBOOK }}{\text { Lesson }} \frac{\text { ENTRY }}{14}
$$

2. $\frac{\text { Boyle's }}{\text { (a) }} \frac{\text { Law }}{\text { The }}$
(a) The volume occupied by a confined gas is inversely proportional to the pressure exerted on it, if the temperature of the gas is held constant. $P V=k$ if temperature is constant.
(b) Boyle's Law applled to real gases more accurately when the gas is at low pressure. At high pressures, Boyle's Law becomes approximate and ultimately does not apply.

A few numerlcal problems wlll help you achieve a "feel" for Boyle's Law. Here's a simple one:

A confined gas has a volune of $600 \mathrm{~cm}^{3}$ at a pressure of 2.0 atmospheres ($20 \mathrm{nt} / \mathrm{cm}^{2}$). Provided there is no change of temperature, what volume will the gas occupy at 3.0 atm?
(12)
A. $400 \mathrm{~cm}^{3}$

B $300 \mathrm{~cm}^{3}$
C Neither of the above is correct.

You are correct. Refer to Figure 12 on page 33 , where the C curwe starms at $-273^{\circ} \mathrm{C}$, the K curve stards at $0^{\circ} \mathrm{K}$, which is the same tenperature (absoiute zero). The C curpe meers the y-axis at $0^{\circ} C$, and the K curye meets in at $+273^{\circ} \mathrm{K}$, again the same temperature. The slopes of the turves axe identical, and the degree size for both the C and K scales are the same; hence whe oniy shange made is a shift of the x-axis.

We shall use the symbol T for temperatures on the Kelvin scale. $A x$ poine i (on curve B) the volume of the gas is V and the Keivin remperature "s x 。 At poinc 2, the Kelvin temperature has been haived. The resultize woiume is then V/2. At point 3, where the remperature hás been waduced vo $T / 4$, the volume is $V / 4$. Since the origin of the axis is zero for borh V and T, what does this relationship permic us to stare?
(22)

A The volume of a gas is equal to its Kelvin or absolute cemperarure。
B The volume of a gas is inversely proporcional to its Kelvin or absolute temperature:

C The volume of a gas is directily proportional to its Kelvin or absoluke remperature.

YOUR ANSWER --- B

You are correct. Body A is at absolute zero; there is no lower temperature. For heat to flow from A into some other body, the other body must be at a lower temperature than A. Hence, it is impossible for hear to flow from A into any other body.

This brings us at last to an acceptable definition of absolute rexo: Let's make it a notebook entry to conclude the formal part of this lessom.

$$
\frac{\text { NOTEPOOOK }}{\text { Lesson }} \frac{\text { ENTRY }}{14}
$$

5. Absoluce Zero

(a) body is at a temperature of absolute zexo when its internal energy cannot be transferred to any outside body regardless of the temperature this outside body may have.
(b) The value of absolure zero on the three common temperature scales is:

$$
\begin{array}{llr}
\text { Kelvin............ } & 0.00^{\circ} \mathrm{K} \\
\text { Centigrade.......... } & -273.16^{\circ} \mathrm{C} \\
\text { Fahrenheft........ } & -459.69^{\circ} \mathrm{F}
\end{array}
$$

Before continuing, please turn to page 125 in the blue appendix.

YOUR ANSWER -- B

This conclusion is unwarranted. If V decreases as Y increases, we may very possibly be dealing with an triverse proportion between these vaxtables. However, the variation we have described so far does not assure us shat V is inversely proportional to P.

Figure 7
To determine this, we must extend our invesilgation of the results in Figure 7 , which is a copy of the last two. columns of Figure 6 on page 71 .

So please return to page 90 and choose the alternative answex.

YOUR ANSWER --- B

You are correc. An unequal number of collisions of molecules against different walls per unit tine would develop unbalanced forces that would make the container do a random jig. Since no container has ever been known to do this, we may conclude that any molecule-to-wall collision inequalities that do exist cend to average our, due to the large number of molecules in motion.

A waluable point emerges from all this: the random motion of the molenules of a gas accounts for the force exerted on che container walls f zom within. The force arises from collisions between the molecules and whe confining walis, and we may assume that equal number of molecules scrike equal axeas in equal cimes.

Suppose the concaner in Figure 3 is itited with two frictionless pistons, Piscon 1 having 5 times the suxface area of Piston 2.

Figure 3
The container is filled with gals, a 50 -nt weight is placed on the larger piston, and a 10 -nt weight on the smaller piston. Of course, both weights would push the pistons down slightly, compressing the gas a bit. What would happen immediately after this inftial compression?
(2)

A Piston 1 would move down and Piston 2 would move up.
B Piston 1 would move up and Pistion 2 would move down.
C The system would be in equilibifum.

Just for fun, try this one: A cylinder-piston container holds 1,000 cm^{3} of helium at $0^{\circ} \mathrm{C}$ and normal atmospheric pressure. If the temperature is lowered to $-250^{\circ} \mathrm{C}$ with no change of pressure, what volume will the helium then occupy?
(18)

A $916 \mathrm{~cm}^{3}$ (approx.)
B $91.6 \mathrm{~cm}^{3}$ (approx.)
C $84.0 \mathrm{~cm}^{3}$ (approx.)
D None of these is correct.

YOUR ANSWER --- D

You are corfect. The right answer is 2.22×10^{3} 1fters.

$$
\begin{aligned}
& \begin{array}{ll}
P=760 \mathrm{~mm} & P^{\prime}=735 \mathrm{~mm} \\
V=2,00 \times 10^{3} 1 & V^{\prime}=8 \% ?
\end{array} \\
& T=273^{\circ} \mathrm{K} \quad \mathrm{~T}^{\prime}=293^{\circ} \mathrm{K} \quad \mathrm{~V}^{\prime}=\mathrm{V} \times \frac{\mathrm{P}}{\mathrm{P}^{i}} \times \frac{\mathrm{T}^{\prime}}{\mathrm{T}} \\
& V^{v}=2.00 \times 10^{3} \mathrm{I} \times \frac{760 \mathrm{~mm}}{735 \mathrm{~mm}} \times \frac{293^{\circ} \mathrm{K}}{273^{\circ} \mathrm{K}} \\
& V^{\prime}=2.22 \times 10^{3} \text { 11ters. }
\end{aligned}
$$

Now let's move on to furcher discussion of the kinetic theoxy.

Please curn to page 124 in the biue appendix.

In Notebook Entry $3(c)$ you will find our first tentative statement about the meaning of absolute zero. We said that absolute zero, which is $-273^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{K}$, is the lowest temperature to which matter can be cooled. Remember chat we arrived at this particular temperature by extrapolating the cooling curve of a gas beyond the region where it actually remains a gas. Now we approach this from another point of view.

When a substance is cooled, what happens to the average speed of its atoms or mulecules?

A The average speed increases.
B The average speed decreases.
C The average speed remains the same.

YOUR ANSWER --- A

You are correct. To find che pressure of the gas, we must know the notal force acting on it.

There are three conrwibuting factors:
(1) The weight of the objects we lay on the piston rable, We can whoose eay value for these.
(2) The pressure of the atmosphere. This is ac be raken as $20 \mathrm{nt} / \mathrm{cm}^{2}$.
(3) The weight of the piston-rod-table assembly, since it also preses dewn on the gas and contributes to the final pressure.

Please contince by waxing to page 71 .

The rabulaced data obtained from an actual laboracory, exersise fs given in Figure 5 。 Study this rable. Try to see how all the figures were obtained.

Trial	$\begin{aligned} \text { Preliminary data: } & \text { Piston area }=10 \mathrm{~cm}^{2} \\ & \text { Weight of piscon assembly }=4.0 \mathrm{nt} \\ & \text { Acmoapheric pressure }=10.1 \mathrm{nt} / \mathrm{cm}^{2} \end{aligned}$				
	weight on tabje (nt)	$\begin{aligned} & \text { total } \\ & \text { weight (nt) } \end{aligned}$	pressuxe due to wts ($\mathrm{nc} / \mathrm{cm}^{2}$)	$\begin{aligned} & \text { total } \mathrm{P} \\ & \left(\mathrm{nt} / \mathrm{cm}^{2}\right) \\ & \hline \end{aligned}$	
\%	100	104	10.4	20.5	10.0
2	200	204	20.4	30.5	6.8
3	300	304	30.4	40.5	5.1
4	400	404	40.4	50.5	4.1
5.	500	504	50.4	60.5	3.5

Figure 6
In Trial 1, a $100-n t$ weight has been placed on the table. Since the piston assembly weighs 4.0 nt, the total weight in this trial is 104 nt . The piscon area $=10 \mathrm{~cm}^{2}$; hence the pressure due to the weight is $P=F / A=$ $104 \mathrm{nt} / 10 \mathrm{~cm}^{2}=10.4 \mathrm{nt} / \mathrm{cm}^{2}$ 。

The next column for Trial 1 displeys a figure of $20.5 \mathrm{nt} / \mathrm{cm}^{2}$. How was chis value for the total pressure obtained?
(7)

A By dividing the volume $\left(10.0 \mathrm{~cm}^{3}\right)$ by 0.488 .
B By using a pressure-measuring instrument.
C By multiplying the $100-$ nt weight by 0.205 .
D By adding the atmospheric pressure to the pressure due to the weights.

YOUR ANSWER --- B

On the face of $i t$, merely by inspection, you can tell that this answer is impossible.

Whe gas is being heated; it will therefore expand and increase its volume if the pressure is constant. But $468 \mathrm{~cm}^{3}$ is smaller in volume than $500 \cdot \mathrm{~cm}^{2}$, so you must have inverted the relacionship.

From Chmeles' Law, we know that

$$
\begin{aligned}
& \frac{V}{T}=\frac{V}{T^{8}} \\
& \text { so } V^{\prime}=\frac{\mathrm{Yg}^{\mathrm{F}}}{\mathrm{P}} \mathrm{~T}
\end{aligned}
$$

Remember, too, that Charles ${ }^{\text { }}$ Law works only when Kelvin temperatuxes are used for T and T '.

Please xeturn to page 40 and pick more reasonable answer.

YOUR ANSWER --- A

Really! We're-surprised at you:

Force per unit area is pressure, so it is not something in addition to pressure。

Be careful: Be sure to remember the definitions of terms.

Try again. Please return to page 43 and select another answex.

YOUR ANSWER --- B

No, the slopes in A and B of Figure 12 on page 33 are the same.

A way to prove this is to measure the angle made by the cooling aurve with either the y - or the x-axis angle. You will find both angles to be equal.

Remember, slope is defined:

$$
\text { slope }=\frac{\Delta y}{\Delta x}
$$

If the curves are parallel to each other, then the $\frac{\Delta y}{\Delta x}$ waiues for both are the same.

Please return to page 33 and read the answers carefully. Refer co the curves and then choose a better answer.

YOUR ANSWER --- B

If V were inversely proportional to T, would not the magnitude of V increase as T was decreased? Remember this happened when we investigated the effect of pressure on volume. As pressure on a gas is raised, its volume decreases; thus, volume is inversely proportional to pressure, by Boyle's law.

But is that happening here? No, it is not.

Please return to page 63. The answer should now be obvious.

YOUR ANSWER -man

Reivew your notes for Lesson 13 . You have forgotten some very essential concepts of the kinetic theory.

Remember that according to the kineric theory, temperature is a measure sex the average kinetic energy of the molecules of a substance (item 3(a) for Lesson 13).

Since kinetic energy is related to the mass and speed of the molecule, that is, $K . E=\frac{1}{2} \mathrm{mw}^{2}$, and since molecular mass does not change with kemperature, then it is the speed that must change.

So, we might then say if there is an increase in temperacure tor any given sample of a substance, there is likely to be an increase in the molecular speed. Naturally, we are aware of the fact that when a substance changes its state, a possible change of internal potential racher than kinetic energy may occur. In general, however, if we exclude such special occurrences, what happens to the average speed of the molecules of a substance when it is cooled?

Please return to page 69 and select the correct answer.

YOUR ANSWER --- A

This is incorrect. The total force acting downward on the piston due to the weight is 10 nt (ignoring the piston's weight). Co this you added the atmospheric pressure of $10 \mathrm{nt} / \mathrm{cm}^{2}$. You added two different kinds of quantities. This is never permissible! What is the sum of 6 apples and 3 oranges? Would you say it is 9 apple-oranges? The process of addition always requires that the quantities being added represent the same physical objects or measurements. We are looking for the pressure exerted on the gas.

Please return to page 105 and select a better answer.

YOUR ANSWER --- A

Remember heat is a flow of energy from one body of higher temperature to another body of lower temperature. Here the requirements for a ficw of heat axe fulfilled because body B is at $0.00001^{\circ} \mathrm{K}$ and body A is ac $0.00000^{\circ} \mathrm{K}$. Despite the extremely low tempeiatures of both bodies, theye is a cemperature differential and heat may be expected to flow from body b to body A. This answer is correct in staring that heat will. flow from body B to bedy A.

However, it is incorrect to state that the heat will flow until both bodies are at $0,00000^{\circ} \mathrm{K}$. For if a flow of heat does rake piace from B co A the energy thus gained by A will tend to raise its remperature above absolute zexo. Thus, both bodies cannot end with 0.00000°. K.

The right answer shand now be obvious. Please return to page 14 and select in.

You are correct. When two variables are directly proportional ar increase of one of them will cause an increase of the other. If any propowtion exists at all, it will have to be of inverse nature.

Let's check rhe rabulated data in Figure 7 to determine if they axe invexsely proporsional.

toval P $\left(\mathrm{nc} / \mathrm{cm}^{2}\right)$	volume $\left(\mathrm{cm}^{3}\right)$
20.5	10.0
30.5	6.8
40.5	5.1
50.5	4.1
60.5	3.5

Figure 7
If you have forgotten how to check a series of related values for a paix of interdependent variables to see if an inverse proportion exists, xefresh your memory by consulting your notebook. When you are ready, choose the one true statement below.

When aze two variables inversely proportional?
(9)

A If their sum is a constant.
B If their difference is a constant.
C. If theit ratio is a constant.

D None of th.se is correct.

YOUR ANSWER --- C

If this equation is correct, you will get an answer of 273° when you ${ }^{o^{\circ} \mathrm{K} \text {, and add them. }}$

But you don't, do you? Thus, the equation iss not right.
32.

Think this over. Now choose the right answer. Please return to page

YOUR ANSWER --- B

On the contrary, this conversion is quife all right:

$$
\begin{aligned}
\mathrm{o}_{\mathrm{K}} & ={ }^{\circ} \mathrm{C}+273^{\circ} \\
& =14^{\mathrm{o}} \mathrm{C}+273^{\circ} \\
& =287^{\circ} \mathrm{K}
\end{aligned}
$$

Please return to page 10. Carefully select another answer.

[^3]Quite right. Pressure is force per unit area. To determine pressure P from total force F and area A, you simply divide F by A. Thus, in Figure 3 on page 66, suppose that the area of Piston 1 is $5 \mathrm{~cm}^{2}$ so chat the area of Piston 2 is $1 \mathrm{~cm}^{2}$. Once both pistons have setiled so equilibrium is established, we can summaize the conditions in this manner: (1) The pressure of the gas is $10 \mathrm{nt} / \mathrm{cm}^{2}$ because the upward force on chis platon must be 50 nt to hoid the $50-n t$ weight in equilibrium by the gas pressure. The area of the piston is $5 \mathrm{~cm}^{2}$ and, with a pressure of $10 \mathrm{nt} / \mathrm{cm}^{2}$, the tocal force acting upward is $F=P A=10 \mathrm{nc} / \mathrm{cm}^{2} \times 5 \mathrm{~cm}^{2} \rightarrow 50 \mathrm{nt}$.
(2) If the $10-n t$ weight is also held in equilibrium by the gas pressuice of $10 \mathrm{nt} / \mathrm{cm}^{2}$ and the area of the piston is $1 \mathrm{~cm}^{2}$, then the cotal foxce in this ase is $F=P A=10 \mathrm{nt} / \mathrm{cm}^{2}=10 \mathrm{nt}$. The upward force obviousty keeps the $10-n t$ weight in equilibrium.

NOTEBOOK ENTRY
 Lesson 14

1. Pressure
(a) Pressure is defined as force per unic area, or $p=F / A$.
(b) Pressure is often measured in nt/ cm^{2}. A though this is not strictiy MKS, it is quice commori. In the MKS system pressure is measured in ne/m ${ }^{2}$ 。
(c) The pressure of a gas is due to the resultant force of many random moving molecules on the wails of the container. The average pressure on ,il the wails and throughout the bodv of the gas is uniformo

Please turn to page 83.

To continue cur study of pressure in confined gases, let's review briefly some information pertaining to atmospheric pressure.

The blanket of 3 ir covering the Earth has weight; consequently, the afx exerts pressure on bodies at the surface of the Earth. This pressure varies from day to day and from place to place. However, an average or standard value for normal atmospheric pressure has been established by common consent. You are probably familiar with the value of $15 \mathrm{lb} / \mathrm{in}^{2}$, (ox, more exactly, $14.7 \mathrm{lb} / \mathrm{in}^{2}$) as one standard atmospheric pressure. This pressure is ziso called one atmosphere.

In a mercury barometer (Figure 4), one atmosphere of pressure an support a column of mercury 76 cm high .

Figure 4
So, when the weather report says that the alr pressure is 76 cm of mextury, os 30 inches of mercary, you must translate this to $14.91 \mathrm{~b} / \mathrm{in}^{2}$. Atchough "cm (or inches) of mercury" is not, strictly speaking, a unit of pressure, it is commonly used as such.

Pressure given in any one unit is always proportional to che pressure in any other unit. For example, a pressure of 0.5 atmosphere $=7.5 \mathrm{Ib} / \mathrm{in}^{2}=$ 15 inches of mercury $=$ \qquad cm of mercury.

Write the answer; then plerse turn to page 105.

YOUR ANSWER -- B
j

You are cozrect. Although one boiy is at abedure zero and she orner Yexy biose to it, there is a remperamure difference, and a fow of heat ixem the body with the higher remperature to the body with the iower xemperaxuse is expected. This flow will continue until the differential vanishes. This can ocur ondy when body A has risen slighty in temperature, and when whe temperaruxe of body B has fallen silghtiy to meet it. When the remperaruies ate the same, the flow of heat ceases.

Now, here is the basis of oux reasoning. Is it possible, under any - neivable condstions, for hear to flow our of body A (remember its remperatixe is $0.00000^{\circ} \mathrm{K}$) into any ocher oucside body? Thar is, can we ser the sempexaruxe of any other body so that heat will flow ous of body a mitc it:

129

A Yes.
\cdots
B No.
C l don't know.

This page has been inserted to maintain concinuity of text. It is not intended to convey lesson information.

YOUR ANSWER --- D

This answer is incorvect。 Let's sheck some facts.

The soluticn of a problem involving Boyle's Law requires that you know at least 3 of che 4 quanticies, the fourth being the unknown.

In this problem the known quantities are:
original volume $=V=4.00 \mathrm{ft}^{3}$
arig+nal pressure $=P=1$ atm
new volume $=V^{\prime}=1.00 \mathrm{ft}^{3}$
while the unknown is $P^{2} \Rightarrow ? ? \%$
You know chat any unics may be used for P and V, as iong as the same units are used for P^{\prime} and V^{\prime} respectively, Since P is inftially given as . atm, use this unit first; then repeat the problem using $14.7 \mathrm{lb} / \mathrm{in}^{2}$, 7 om of mercury, and $10 \mathrm{nt} / \mathrm{cm}^{2}$ in turn.

The xindamental equarton is: $P V=P^{\prime} V^{f}$
and since P^{\prime} is wanteu, then: $\quad P^{\prime}=\frac{P V}{V^{r}}$
So, the first substitution would look like this:

$$
P^{\prime}=\frac{1 \mathrm{~atm} \times 4.00 \mathrm{ft}^{3}}{.00 \mathrm{Et}^{3}}
$$

All righr? Now correct your previous erzors, return to page 53 , and choose ancther answer.

YOUR ANSWER --- A

You're trying to set up some sort of direct proportion.

First, remember that halving the trapped gas volume does not change the number of gas molecules in the cylinder. If they are packed intc a smaller space, each one, in its random travels, cavers a shorter distance before colliding with a wall or another molecule. It seems reasonable that such collisions will occur more often in the smaller space.

If pressure is the ret effect of molecule-to-wall collisions, you cannot conclude that the pressure would go down as a result of an increase in the number of coilisions.

Please return to page 45. Select the right answer.

This page has been inserted to maintain continuity of text. It is not intended to convey lesson informatinn.

CORRECI ANSWER: The temperature $-273^{\circ} \mathrm{C}$ is called absolute zero. There is much evidence to show that matter cannot be driven to any remperatuxe lower than this.

In extrapolating the contraction of a gas to absolute zero as we did a few moments ago, we atarted with $273 \mathrm{~cm}^{3}$ of the gas to keep our arithmethe simple. Perhaps you feel that it is unfair to reach a conclusion when the basis of the experiment is a very special volume. That is, does $-273^{\circ} \mathrm{C}$ tasn out co be absolute zero when we repeat the same experiment with some other volume?

```
Please curn to page 98 and see if you are right.
```

```
YOUR ANSWER --- D
```

You are correct. The atmospheric pressure is $10.1 \mathrm{nt} / \mathrm{cm}^{2}$. This is added to the pressure of the weights, $10.4 \mathrm{nt} / \mathrm{cm}^{2}$, so that the total pressure on the gas, P , is $20.5 \mathrm{nt} / \mathrm{cm}^{2}$. Identical procedures have been followed for the other four trials. From now on, we will work with only the last two columns of Figure 6 on page 71, which represent our "working data."

Fron Trial 1 to Trial 5, the pressure rises steadily. Simultaneousiy, the corresponding volume decreases consistently. The moment we recognize this, we know positively that:
(8)

A We are not dealing with a direct proportion between P and V.
3 We are not dealing with an inverse proportion between ind V.

You are correct. The force exertad by gas molecules is equal for equal areas as we demonstrated previously. Therefore, every square cm of Piston 1 has the same upward push from the gas as every square cr of Piston 2 。
H.wever, in Figure 3 on page 66, Piston 1 has an area of 5 times as many squaxe cm; hence the upward force on it is 5 times as great as that on Piston 2. Since the downward force on Piston $1(50 \mathrm{nt})$ is 5 times as great as that on Piston 2 (10 nt), there are no unbalarced forces, and the system is in equilibrium.

Now. considering only the force exerted by the gas on the pistons, let's disti.guish becween the rotal force and the force per unit area. The rotal force exerted by the gas on Piston 1 is 5 times as great as the cotal. force on Piston 2, but the force per unit area is exactly the same on each. The force per unit area is called pressure. If pressure is expressed by P, force by F, and area by A, which of the following relationships correctly defines pressure?
(3)

A None of these is correct.
B $P=\frac{F}{A}$
$C \quad P=\frac{A}{F}$
D $\mathrm{P} \dot{\mathrm{m}} \mathrm{F} \mathrm{A}$

YOUR ANSWER • D

You're wrong.

One of the answers given is correct.
Remember:
(1) From Charles' Law, you can write

$$
\frac{V}{T}=\frac{V^{r}}{T^{\prime}}
$$

from which you can obtain ${ }^{\text {T }}$
(2)

$$
V^{\prime}=\frac{V T^{\prime}}{T}
$$

Then, if you express the temperatures in Kelvin degrees, you will arrive at one of the answers listed. Be sure you make the conversion to Kely in degrees correctly.

Please return to page 40 after you have recalculated. You can find the right answer in the list.

This page has been inserted to maintain continuity of text. It is not intended to convey lesson information.

This page has been inserted to maintain cont:lnuity of iext. It is
ended to convey lesson information. not intended to convey lesson information.

YOUR ANSWER --- C

No. You've slipped!

A given mass of gas has a fixed weight (provided, of course, that we keep it in a definite location where gravity doesn't change). If the mass is given, weight is not a variable and therefore the volume does not depend on It. Remember, in the sense we are using it, the word "depend" and its synonyms relate to the variation of one quantity as a function of ancther,

Please return to page 43. There is a better answer you can pick

Well, let's check some facts:
(1) By definiriox, body B has a highe, temperature than body A, if heat wili flow from body B to body A.
(2) Similaxly, in order for heat to flow ont of body A at absolute zero into Body B at some other cemperature, then body A must be at a higher temperature than body B.
(3) But if absolute zero is the lowest possidie temperature, how can body A at $0,00000^{\circ} \mathrm{K}$ be at a higher cemperature than some other body?
(4) Hence, heat cannot flow out of body A at absolute zero inco any other body regardless of its temperature.

Please return to page 84 and choose the right answer.

YOUR ANSWER --- A

You cannot test proportionality of any kind by comparing the sums of pairs of values for two interdependent variables.

Please xecurn to page 79. Before making your next selection, please check your nores and give the question some additional thought.

The best way to test this problem $\frac{1}{3}$ go ennetruct a graph starting with some random volume omhex than $273 \mathrm{~cm}^{3}$. (Figute 10)

-	$\left.\pm{ }^{\circ} \mathrm{C}\right)$	$\underline{y}\left(\mathrm{~cm}^{3}\right)$	$\begin{aligned} & \mathrm{CONT} \\ & \left(\mathrm{~cm}^{3}\right) \end{aligned}$	$\underline{V}^{8}\left(\mathrm{~cm}^{3}\right)$
	0	100		
(1)	- 50	100	18.3	81.7
(2)	- 100	81.7	18.3	63.4
(3)	- 150	63.4	18.3	45.11
(4)	Hzquefies			

Figure 10

In this experiment we used nitrogen starting at $0^{\circ} \mathrm{C}$ with a volume of $100 \mathrm{~cm}^{3}$. Referring to the table, you can gee that if we lower the remperature of $100 \mathrm{~cm}^{3}$ of the gas from $0^{\circ} \mathrm{C}$ to $-50.0^{\circ} \mathrm{C}$, then the contraction tia $100 \mathrm{~cm}^{3} \mathrm{x} \cdot 50 / 273=18.3 \mathrm{~cm}^{3}$. So, at $-50.0^{\circ} \mathrm{C}$, the volume has shrunk to $81.7 \mathrm{~cm}^{3}$. (Point 1 on the graph.) The other points are obtained in a similar fashion. Since nitrogen liquefies at $-196^{\circ} \mathrm{C}$, the solid part of the curve ends at point (4). When the curve is extrapolated to the x-axis (zero volume or the vantshing poinc), absolute zero sigain turns out to be - C. Fill in the number; then tuxn to page $\$ 06$.

YOUR ANSWER --- C

We're not quite sure what you mean by "minus and plus" curves. Regardless of our choice of axis, both curves slope to the right as the ordinate values go up. Thus, you cannot differentiate between them by calling one "minus." and the other "plus." It is irue that in A, temperatures are minus values, and in B they are plus values. This is caused by the difference in temperature scales, not by any difference in curves.

Please return to page 33. Choose a better answer.

YOUR ANSWER --- A:

We believe that you chose this answer by misinterpreting the following facts:

When the remperature is Then the volume is

Because of the similarity of form berween the factors in the two columns, you thought that the volume is equal to the temperature.

The temperature T is $273^{\circ} \mathrm{K}$. At that temperature, the volume could be anything, depending entirely on the inftial amount of gas. The relationships above merely say that when the temperature is halved, the volume is halved; when the temperature is reduced to $\frac{1}{4}$, the volume drops to $\frac{1}{4}$. This does not mean an equality of T and V.

Please choose another answer after returning to page 63.

YOUR ANSWER --- C

You are corfect. From Charles" Law we have: $V^{\prime}=\frac{V T^{\prime}}{T}$. Converting the two temperstures to Kelvin, we then can write:

$$
\begin{aligned}
& V^{\vee}=500 \mathrm{~cm}^{3} \times \frac{313^{\circ} \mathrm{K}}{293^{0} \mathrm{~K}} \\
& V^{s}=534 \mathrm{~cm}^{3}
\end{aligned}
$$

Often both temperature and pressure change simultaneously. This means that Boyle's Law and Charles' Law must be applied simultaneously. - Eet us write both laws in the familiar proportionality form:

Boyle's Law:	$V=\frac{k}{P}$	if T is constant
Charles' Law:	$V=k^{\gamma} T$	if P is constant

We may combine these into a singile proportion: $V=k$ " $\frac{T}{\mathrm{p}}$ in which k ". is some constant derived from the other two, k and k '.

Solvirg for this constant; we then have: $k^{\prime \prime}=\frac{P V}{T}$
Since, for a given sample of gas, the fraction $P V / T$ will yeild the same numerical value for all associaked values of P, V, and T , which of rne following would be a convenient form for expressing this relationship?
(24)
$A \quad \frac{P V}{T}=\frac{P^{\prime} V^{\prime}}{T^{\prime}}$
$B \quad \frac{P T}{V}=\frac{P^{\prime} T .}{V^{\prime}}$
$C \quad P V T=P^{\prime} V^{\prime} T^{\prime}$

YCUR ANSWER --- B

You are sorxact. We an depend on this effect as long as the substance is in a memertur: 'age where it does not change ics state. So, let's confune ourselves to g yes in the Boyle's Law temperature range。

When a gas if cooled, its remperature is reduced either by allowing t. heat so fiow ont of it inte some body at a lower semperature, or by allowing It to zrpand to do external work. In eicher case, we belleve that the average spert of the random, vibratory motion of its molecules decreases. The molecules mowe nore slowly, undergo less violent collisions, and exery a smaller average pressure on the walls of the container. It seems reasonable: therefore, to associace lower and lower cemperatures with slower and Ewwer molecalaw motion. It seems equally reasonable to chank when a gat Is Finally cooled to absolute zero (if this could ever be doney, she moleculax motion would cease altogecher.

This idea seems logical. Absolute zero is the lowest possible temperature to which the gas can be cooled; the slowest possible moledriar motion is, obviously, no motion ac all. fence, the ideas seem to dovetail nicely.

Please turn to page 103.

Howewer, to reach these conclusions we mast extraporate the benaiou of gases beyond the point witue the substance remains a gas. No ly quay: the gas molecules form bond that move them mush loset rogether; of solidify, strong bonds mus. $\%$, that iurther dectesee the diswande berween the molecules. At this poric, the molecules wamor move about wrh anyturne like the freedom they have in the gaseous state,

Today physiciscs believe shat moleculat moxion contirues when a substance is brought down to absolute zexo, even in rheozy; and that absolute zero represencs a temperacure of ieast molecunai mesions bet rot zero molectilar motion. Extrapolating to absolute zero, then, does nos. mean quite the same thing as extrapolating so absolateres. sbsclute tex.

How car we improve the tencarive detinition of bosoluxe tero given re Norebook Entry 3(c) of the previcus lesson" Absciute zero "is the temperature to whish matcer can be cooled," is not a significarit atatemenw. We ought to be able to ao becter than chair.

Please continue to page 104.

All right, let's work from the point of view of internal energy. Bearing in mind what we have just said, which of the following statements is
true?
(27)

A A body at absolute zero has no internal energy.
B. A body at absolute zero has very little internal enexgy.
C A body at absolute zero has no potential energy, but does have some internal kinetic energy.

D A body at absolute zero has no internal kinetic energy, but does have some internal potencial energy.

CORRECT ANSWER: A presaure or 38 cm of mercury is che equivalene or 0.5 atn; ox $7.5 \mathrm{lb} / \mathrm{in}^{2}$; or 15 tnches of mercury.

Befoze continuing, please turn to page 123 in the blue appendix.

In perferming experiments with gas pressures, aiways yemember that atmospheric pressure must be taken into account in recording and using the data. Figuxe 5 shows this.

Figure s
Here a gas-right, frictionless piston is firted inside a smooth cyilnder of glass, ryapping a volume of air. A $10-n t$ weight rests cre the piston table, and the face area of the piston is $10 \mathrm{~cm}^{2}$. Atmospheric pressure, shown by the shorg arrows over the pistor, is caken as 1 acmosphere, dr $15 \mathrm{lb} / \mathrm{fn}^{2}$ 。 Note: $15 \mathrm{ib} / \mathrm{in}^{2}$ is roughiy the same as $10 \mathrm{nt} / \mathrm{cm}^{2}$.

Look at the diagram and the numerical data; then assuming that she piston has reached equilibrium, find she pressure exerted on the gas. This answer will also represent the pressure exerced by the gas on the piston. since the system is in equilibrium.
(4)

A $20 \mathrm{nc} / \mathrm{cm}^{2}$
B $11 \mathrm{nc} / \mathrm{cm}^{2}$
c. $10 \mathrm{ne} / \mathrm{cm}^{2}$

D $1.0 \mathrm{nc} / \mathrm{cm}^{2}$

CORRECT ANSWER: Extrapolation or the nitwogen cooling curve for a fandom volume of the gas shows what absouve zexo is - $273^{\circ} \mathrm{C}$ 。

```
Time Hor a Notebook Enky.
```


NOTEBOOK ENTRY
 Lesson 14

3. Expansion and Concrection of Gases
(a) An ideal gat expands or contracts $0.00366 \mathrm{~cm}^{3}$ fox each degree change of temperature, regardess of irs composition Real gases follow this lew approximately。
(b) Arochex way r describe che rate of volumetric change of a gas te co say that its volume whagee iftiv of the volume ar $0^{\circ} \mathrm{C}$ for each degmee change of temperature Centigrade.
(c) An ideal gas (one which does noc liquefy regardless of temperam ture) would, therefore, shrink to wexo volume at a temperature of -2790 C°. This temperarure is called absolute aero; it represents the lowest remperarure to which matrer can be cooled.
(d) Real gases Ifquefy before they reach absolure zero. An exwafolation of the cooling curve of a real gas meets the zevomoinme amis at $-273^{\circ} C$. Ac notmal acmosphexic pxascure, the liquefacion emperacutes of some sommon gases are:

$$
\begin{aligned}
& \text { N.tuxagerio. } 000000000-196^{\circ} \mathrm{C} \\
& \text { OXYgenoooco:00000000-1830 } \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Helturmosooococoove000-2690 } \mathrm{C} \\
& \text { AKgOnocosocoonoooo- } 186^{\circ} \mathrm{C} \\
& \text { Neonno:0000.000000.0-2460 } \mathrm{C}
\end{aligned}
$$

As you will nocice, helium approaches absolute zero most closely before it Ifqueties. This fe one of che things which explains the imporgance or helfum in the science of cryogenics, or low-temperature physies. Fisase continue by surning to page 6%.

YOUR ANSWER --- C

From a strictly numerical point of view, it is quite possible co obtain an answer of 20.5 by multiplying, 00 by 0.205 . But how does this appiy to the question? You should be able to explain all your operations betofe you do them.

The values in the fifth column are important one; they were obtained by performing a logical arithmetical process based upon physical considexations. Please think abour this, then return to page 7 , and select the answex which results from this logical operation.

YOUR ANSWEK -- C

Yor axe incorrect.

Perhaps it would be helpful to vexbalize che expression PV/T k. I* woulả somad Like this: given a certain volume of gas at a pressure f and an absolare cemperature T, we multiply the pressure and volume ($P V$) and divide this product by the absolute temperarute (PViT) . From thfs we obwain a cextain number. Next, we allow boch che pressure and temperamue to change ro some new values, say P^{\prime} and T^{\prime} 。 We now measure the new volume V^{\dagger}, and again pexform the multiplication $P^{\prime \prime} V^{\ell}$ and the division ($P^{\top} V^{r} / T^{7}$) 。 The new numbex obtained cherefxom will be the same as the numbex obtainec when we originally periormea the arithmeric operation.

A given sample of gas, the pressure and remperavuxe of which afe changed from one set of valueg to another, will change fits volume so that the product of pressuxe and volume divided by the temperature will yield the same number as it did before the change.

Please feruan so page 101 . The coryect arswer should be ciear now.

YOUR ANSWER --- C

To find the contraction for each degree, you subtract the volume an $-1.00^{\circ} \mathrm{C}$ from the volume at $0^{\circ} \mathrm{C}$; you repeat the subcraction of volumes for the other. temperatures, subracting the volume ar -2.00 degrees from that at. -1.00 degxee, and the rolume at -3.00 degrees from that at -2.00 . anü so forth.

Tn wther words, the contraction of a gas per degree Centigrade is simply the difference between the two volumes at the initial and final kemperatures.

The answer you selected indicates that you performed this subtraction incorrectiy.

Please be careful. Write the figures down, then subtract. Please return to page 58 and choose another answer.

YOUR ANSWER --- B

No, your answer is incorrect.

Consider how we ean estimate the pressure of a gas in a pistoncylinoer axtangement such as that in Figure 9 on page 47. in A, the pressure of the gas is determined by the sum of the weights (piston assembly and the added weight on the table) divided by the area of the piston.

Now look at B. The volume of the gas has increased, but how abule the sum of the weights and the area of the piston? Have these changedt Since they axe the same in B as in A, we are forced to conciude that the gas pressure has been held constant during the heating process.

Please return to page 47 and choose the other answer.

You are correct. The frequency of molecule-to-wall colilisions wowd cermanly increase, causing the pressure to increase. Furthermore, it is reasonable to guess that haiving the volume would double the pressure, gil ocher rhings remaining equal. This is only a guess, however, unless we prove is.

Obwously, an actual experiment is in order to enable us to find a numexical relationship between pressure and volume, if one exists. If the cylinder in Figure 5 on page 105 is marked off in cubic centimetezs, we can then find the volume of the trapped gas directly. We can add knownu weights to the piston table, wait for equilibrium, and so determine the pressure needed to establish each new volume.

Since we are going to do an actual experiment, will we need to know the weight of the piston-rod-table assembly before we start?
(6)

A Yes.

B No.

YOUR ANSWER --- C

This answer is incorrect.

You may have been chinking about change of stare. When a substance is cooled thxough a temperature interval where it is, for example, solidifying from the liquid state, there may be no change of average molecular speed, because the potential energy, rather than the average kinetic energy of the molesvies is changing.

Lec's eliminate change of state from this problem. For when a gas is cooled in the temperature range in which Boyle's Law applies where it remains a gas at all times, there is no change of stace involved.

Under these conditions, when a substance is cooled, what happeas to the average speed of its molecules?

Please return to page 69 and pick a better answer.

YOUR sNSWER --- C

You are correct. The easiest way to do this is shown below:

```
\(V=4.001 \mathrm{E}^{3}\)
\(\begin{aligned} & F=1.00 \mathrm{arm}_{3} \\ & V^{\prime}=1.00 \mathrm{ft}^{3}\end{aligned} \quad P^{\prime}=\frac{P V}{V^{\prime}}=\quad \because x \frac{4.00 \mathrm{ft}^{3}}{1.00 \mathrm{ft}^{3}}=4 \mathrm{~atm}\)
\(P^{\prime}=\) ??
```

Observe that P^{\prime} is going to be 4 times as large as P, regardless or inits. Thus, you can at once write your answers:
(a) $14.7 \mathrm{lb} / \mathrm{ft}^{2} \times 4=58.8 \mathrm{lb} / \mathrm{ft}^{2}$
(b) 76 cm of mercury $x 4=304 \mathrm{~cm}$ of mercury
(c) $10 \mathrm{nt} / \mathrm{cm}^{2} \times 4=10 \mathrm{nt} / \mathrm{cm}^{2}$
(d) 1 atm $\times 4=4 \mathrm{~atm}$ 。

Here's one more problem involving the application of Boyle's Law. The tire of motor scooter has an internal volume of $2,250 \mathrm{~cm}$. It is pumped up with air to a pressure of $44 . \frac{1}{2} / \mathrm{in}^{2}$. What volume of air at nozmal atmospheric pressure ($14.7 \mathrm{lb} / \mathrm{in}^{2}$) is required to accomplish this?

Write out your solution. Be careful with the values you assign to V, P, V^{\prime}, and P^{\prime}. When you have your answer, turn to page 47 .

YOUR ANSWER --- A

This is incorrect. One of the expressions is right.

Pressure is force per unit area. If a force of 12 nt is exerted on $4 \mathrm{~cm}^{2}$ of area, then a force of 3 nt is exerted on each cm^{2} 。 In other words, in this example the pressure would be 3 nt per cm^{2}.

If you know the rotal force F, and you also know the area on which this force is exerted (A), then how do you arrange these expressions to find force per unit area?

Please return to page 91 and pick a better answer.

T 5

YOUR ANSWER --- D.

How can you accept this?

If we belleve that all molecular motion does not cease at $0^{\circ} \mathrm{K}$, then we must also believe that there is some internal kinetic energy in the body even at this temperature. Furthermore, no evidence is advanced to point to either the absence or presence of internal potential energy at absolute zers.

No, one of the answers is better than this. Please return to page 104 and try to find it.

YOUR ANSWER --- B

It might have been obtained that way if we had the proper instrument at our command. But since no mention is made of a pressure garge, you cannot assume that the pressure was determined chat way.

No. The pressure in $\mathrm{nt} / \mathrm{cm}^{2}$ is obtained from other data and pure logic. Think about it.

Please return to page 71. Pick the answer that makes physical sense.

YOUR ANSWER --- D

No, one of the answers is right.

We are dealing with $1,000 \mathrm{~cm}^{3}$ of helium. The temperature is to be reduced over an interval of $250 \cdot C^{0}$. The contraction then is:

$$
1,000 \mathrm{~cm}^{3} \times \frac{250}{273}
$$

The answer to this operation is then subtracted from the original wolume to find the new volume. The final answer is one of those fn che list.

Try again, please. Then return to page 67 and select the right answex.

YOUR ANSWER --- D

No, one of the answers is right.

If you were asked what fraction part of 100 is represented by the number 50 , you would answer this almost without thinking. You'd say that
50 is $\frac{1 / 2}{2}$ of 100

Well, to get this answer you set up a fraction like this:

$$
\frac{50}{100}=\frac{1}{2}
$$

so you can say that 50 is $\frac{1}{2}$ of 100 .

Now do the same thing with the problem at hand. Please return to. page 61, work it out, "hen choose the right answer.

This page has been inserted to maintain continuity of text. It is not intended to convey lesson information.

YOUR ANSWER --- B

This is incorrect.

Contraction per degree is found by suberacting one woiume from another: For example, if you wanted to find the contraction berween $0^{\circ} \mathrm{C}$ and $-1.00{ }^{\circ} \mathrm{B}$, you would subtract $996.34 \mathrm{~cm}^{3}$ from $1,000 \mathrm{~cm}^{3}$. The same process is repeated to find the contraction from $-1.00^{\circ} \mathrm{C}$ to $-2.00^{\circ} \mathrm{C}$, using the appropriate volumes.

In short, the contraction of a gas per degree Centigrade is simply the difference between the two voinmes at the initial and final temperayres.

Your answer shows that you performed this subtraction improperily.

Please return to page 58 and choose another answer.

YOUR ANSWER --- B

Refer to Figure 3 on page 66 if you wish. You probably based this answer on the fact that the area of Piston 1 is 5 rimes as great as the area of Piston 2. Since we know that equal numbers of gas molecules strike equal surface areas in equal times at any given instant, the total force acting upward on Piston 1 must be 5 times as great as that on Piston 2. Up to this point, your thinking is correct. The force exerted by the gas upward on Piston 1 is definitely 5 times as great as the force exerted by the gas on Piston 2.

However, now compare the downward forces exerted by the 50-ne weight on the left Piston and the lo-nt weight on the right. Init the downward force on Piston 1 also 5 times as great as the downward force on Piston 2?

Please return to page 66. Choose another answer.

WORKSHEET

Please Ilsten to Tape Segment 2 for Lesson 14 before starting to answer the questions below, PLEASE REFFR TO THE ASSUMPTIONS ON PAGE 2 OF THE STUDY GUIDE WHILE IJSTENING.

QUESTITONS

1. The fact that the molecvies of an ideal gas move at random within the contoiner (Assumption 1) is explained cheoretm ically by
A. the straignt line motion of the molecules bew tween colifsions.
B the large number of molecular coliisions per unt time.
C the lack of eiasticity in molecular collisions:
D the inexibility of the walls of the container.
E Newtons Law of Universai Gravitationc
2. Since molecules are assumed to be very smail compared to the distanoes they travel between collisions (Assumption 3), they should be thought of as
```
A spheress.
B small cubes.
C hollow objeots:
D massiess objects:.
E points.
```

3. In the kinetic theory, whach one of the following is igm nored, or assumed not to exist?

A Conservation of momentum.
B Conservation of mechanical energy.
C Elastic collisions.
D Gravjtational attraction between molecules.
E Newton's first law,
4. In a perfectiy cubical container, if there are x coinisions per second of molecules against one particular wall, what will be the total number of collisions per second against all the wallis of the container considered together?

A	2 x
B	4 x
C	6 x
D	8 x
E	9 x

Please returr now to page 2 of the SYUDY GUIDE:

WORKSHEET

Please 1 lsten to Tape Segment 2 for iesson 14 before staxtage to answer the questions below. Refier to the Data Iuems as direoted in the tape。

Data Item A : To go from $\mathrm{b} / \mathrm{sh}^{2}$ to $n \mathrm{tam}^{2}$, we do tras:
Step 1: Suce 1.10 contains 4.45 nt then

$$
14.7 \frac{20}{\mathrm{in}^{2}} \times 4.45 \frac{\mathrm{nt}}{20}=65.4 \frac{\mathrm{nt}}{\mathrm{mn}^{2}}
$$

Step 2: There are 2.54 om in 1 incha nerne tinere are $(2.54 \times 2.54) \mathrm{cm}^{2}$ in $1 \mathrm{in}^{2}$; so that

$$
6504 \frac{n t}{\operatorname{sn}^{2}} \times \frac{7}{\left(2.54 . \times 2.541 \mathrm{~cm}^{2}\right.}=10.1 \frac{\mathrm{nt}}{\mathrm{~cm}^{2}}
$$

Date Item B:
1 millibar $=0.01 \mathrm{nt} / \mathrm{cm}^{2}$
Multiplying both sides of the above by loco:
$1000 \mathrm{millibars}=10 \mathrm{nt} / \mathrm{cm}^{2}$ and since $10 \mathrm{~ns} \mathrm{~mm}^{2}$ is approximately nomal atmos pherto presso ure, then normal atmospherie pressuxe is roughly 1000 mint bars

To be correct to 4 signiticant disits, the Uos. Weather Bureau uses 1,023 mily ibas as Standard Atmospherio Pressure。

QUESTIONS

5: If you take normal atmosphema pressure ee 20 mone the percent error compared to the aotaz? vaine to 3 sinits.ant digits is
$\begin{array}{ll}\text { A } & 0.1 \% \\ \text { B } & 1.0 \% \\ \text { C } & 0.01 \%\end{array}$
D 20%
E 0.5%
6. A milifbar is $1 / 2000$ of a bar. How many neweons pex square meter are there in 1 bar?
$\begin{array}{ll}A & 102 \\ B & 103 \\ \text { C } & 104\end{array}$
D 20^{5}
E 10^{6}

Please return now to page 105 of the STUDY GUIDE

WORKSHEET

PGase Lasten to Tape. Segment 3 for Lesson 74 before starting ne answer the questions below. Refer to Data Item A as directu ed in the tape.

Deta T立em A:

QUESTIONS

Boylers Law: $P V=k$ (T constant? Chartes! Law: $\frac{V}{T}=k(P$ constant)

Genemal: $\quad P V T=P r v i s$
But if the volume is constanto. then $V=V^{0}$ 。 Dividirg through by the common V we obtain:

$$
\frac{P}{T}=\frac{P}{T i}
$$

7. Despite the flexibility of rubber, a modern automobile tire is not considered to expand significantly when inflated as compared with its uninflated state. Thus, whether inflated fully, partially, or not at all

A the pressure in a tixe may be considered to remain constant.
B the volume of air in a tire may be considered the same.
C the temperature of the air cannot change.
D both the pressure and temperature remadn the same for all conditions.
E mone of the above is correct.
8. Suppose the temperature of the air in a tife rises from $27^{\circ} \mathrm{C}$ to $47^{\circ} \mathrm{C}$ due to road friction on a hot dayo If the initial pressure was $451 \mathrm{~b} / \mathrm{in}^{2}$, what would the finel. pressure be? (Don't forget to convert Catemperatures to Kezvin before you starto)
A $48 \mathrm{Ib} / \mathrm{in}^{2}$
B. $4 \dot{2}, 2 \quad 1 b / 2 n^{2}$
C. $76.5 \mathrm{Ib} / \mathrm{in}^{2}$
D $\quad 258 \mathrm{Ib} / \mathrm{Ln}^{2}$

Please return now to page 69 of the STUDY GUIDE.

WORKSHEET

Please iisten to Tape Segment 4 before starting to answer the questions below.

QUESTIONS

9. The gas laws as we have described and partially derived them appay onzy to
A. real gasese
B monatomic gases like helium.
C diatomic gases I Ike oxygeno.
D_{1} al gases.
E^{\prime} None of the above is correct.
10. The mofecules of a real gas attract each otner when they are brought surfoientily close; thus, real gases diffes from ideal gases in this way, among others. If we greato ly compress a real gas of given initia? volume and ternes erature, will its temperature increase more, lesss or the same as that of an Ideal gas for the same conditionst
A, more
B Less
C the same

When you have answered the questions, return to the tape ard listen to the concluaing segment for this Lesson. It contains amportant information regarding the temina, aothoties of thas section of the course and mast wot be omitted.

At the conciuston of the tape, piease return to pape 19 of the STUDY GUIDE Thank you.

HOMEWORK PROBLEMS

1．What is the Centigrade temperature when the absolute tempm eratiare is $20^{\circ} \mathrm{K}$ ？

2．What is absciute zero on the Fahrenheit scale？
3．A sample of a gas occupies a voiume of $586 \mathrm{~cm}^{3}$ at $20^{\circ} \mathrm{C}$ ． It is then heated to $40^{\circ} \mathrm{C}$ with no change of pressure．What \hat{A} the $\nabla 0^{\prime \prime}$ ume of the gas at this new temperature？

4．The inftial volume of a gas 3 a $500 \mathrm{~cm}^{3}$ at 76 cm of merouryo What will its pressure be after．it is compressed to a volume of $300 \mathrm{~cm}^{3}$ at constant temperature？（Express the new pressure in om of mercury．

50．A mass of gas ai normal atmospheric pressure has a volume of $600 \mathrm{~cm}^{3}$ at a temperature of $20^{\circ} \mathrm{C}$ 。 The container hoid－ ing the gas is then placed in a tank of boining water at normal pressure for 20 minutes．Assuming free expansion In the containerg what voiume wili the gas occupy at the end of that time？
60．An oxygen tank of volume $2.00 \mathrm{ft}^{3}$ is filled to a pressure of $3000 \mathrm{Ib} / \mathrm{in}^{2}$ 。 What was the original volume of the oxym gen when it was at a pressure of I atmosphere：（Assume constant temperature。）

7：A mass of $2000 \mathrm{~cm}^{3}$ of hydrogen at $27^{\circ} \mathrm{C}$ and a pressure of 80 cm of meruury is compressed untily its volume is $250 \mathrm{~cm}^{3}$ and its pressure is 400 cm of mercury．What is the centim grade temperature of the gas after compression？

[^0]: "PERMISSION TO REPRODUCE THIS COPY RIGHTED MATERIAL HAS BEEN GRANTED BY
 Sargent-Welch
 Edward F. Ewen
 to EAIC and organzations operating UNDER AGREEMENTS WITH THE NATIONAL IN. Stitute of education. furtmer repro. DUCTION OUTSIDE THE ERIC SYSTEM REoumes permission ut the copyright owner."

[^1]: There is an error in your arithmetic.
 You may have inverted the ratio of pressures or temperatures.

 Please try to locate your error; then return to page 26 and select the right answer.

[^2]: -

[^3]: YOUR ANSWER -- B

